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Size and metabolism are highly correlated, so that community energy flux
might be predicted from size distributions alone. However, the accuracy of
predictions based on interspecific energy-size relationships relative to
approaches not based on size distributions is unknown. We compare six
approaches to predict energy flux in phytoplankton communities across suc-
cession: assuming a constant energy use among species (per cell or unit
biomass), using energy-size interspecific scaling relationships and species-
specific rates (both with or without accounting for density effects). Except
for the per cell approach, all others explained some variation in energy
flux but their accuracy varied considerably. Surprisingly, the best approach
overall was based on mean biomass-specific rates, followed by the most
complex (species-specific rates with density). We show that biomass-specific
rates alone predict community energy flux because the allometric scaling of
energy use with size measured for species in isolation does not reflect the
isometric scaling of these species in communities. We also find energy equiv-
alence throughout succession, even when communities are not at carrying
capacity. Finally, we discuss that species assembly can alter energy-size
relationships, and that metabolic suppression in response to density might
drive the allometry of community energy flux as biomass accumulates.

1. Background

The allometry of energy-size relationships (scaling exponent less than 1) and
their regularity among species suggests that the size distribution of organisms
affects community energy flux [1]: that is, communities composed of smaller
individuals should have higher mass-specific rates than communities of
larger individuals [2,3]. Scaling relationships that quantify how energy use
varies across sizes (and species) could thus predict community energy flux
solely based on size distributions [4,5]—providing a powerful tool to estimate
function, because size distributions are generally easier to obtain than measures
of whole community function. Furthermore, interspecific scaling relationships
could inform on how changes in size driven by anthropogenic pressures
(e.g. exploitation, warming) affect the transfer of energy in ecological systems
[6,7]. The reliability of these predictions, however, depends on whether inter-
specific patterns of energy use based on size adequately approximate
community function [8].

While interspecific scaling relationships based on size predict large-scale
ecological patterns [9-11], their predictive power decreases at smaller scales
[12-16]. Hence, size alone might not be the most informative variable of
energy flux in populations and communities, but this remains an open ques-
tion. Few studies have tested the ability of interspecific scaling relationships
to predict empirical patterns of community energy flux, and even fewer their
relative merit in comparison to alternative approaches (e.g. not based on size
structure or including more species-specific information) [17] but see [18,19].

© 2020 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Schematic of the approaches used to estimate energy flux in phytoplankton communities (example with a 3-species community): from the average among
species of (a) per cell energy use or (b) biomass (biovolume)-specific rates; interspecific scaling relationships that account for the (c) size- or (d) size and density
dependence of cell energy use; individual species rates of (¢) mean cell energy use or (f) density-dependent cell energy use. (Online version in colour.)

Of the studies that have formally tested predictions of
interspecific scaling relationships, some found good agree-
ment between predictions and data [3,20,21], while others
found deviations from expected patterns [2,7,8,22]. Some of
these inconsistencies could be due to the use of general size
scaling exponents (e.g. %). Since the allometry of energy
use varies among groups of organisms [23-25], taxon-specific
exponents can improve the reliability of predictions based on
interspecific scaling relationships [19,21,26]. Accounting for
density-dependent energy use could further improve predic-
tions [27-29], but to the best of our knowledge, this approach
has yet to be tested.

While size is a good predictor of individual metabolism,
community energy flux can be insensitive to size structure.
For instance, when metabolism scales isometrically with
mass, as for many unicellular organisms [29-31] particularly
when estimated as a function of carbon content [32]. Under
isometry, biomass-specific energy use is equivalent for
small and large organisms. The influence of size structure
on energy flux might also disappear when communities are
at carrying capacity as predicted by the energy equivalence
rule [2,33]. Under energy equivalence, the total energy flux
per unit area is invariant of size because the higher metab-
olism of larger organisms is perfectly compensated for by
their lower abundance, i.e. reciprocal scaling of density and
metabolism with size [21,34]. The value of the scaling expo-
nent then determines how energy flux varies as a function
of biomass: under hypoallometry biomass-specific energy
flux declines for larger species [2], while under isometry it
is constant [31].

We compare the relative ability of six approaches of
increasing complexity to predict energy flux in phytoplank-
ton communities during succession under two light

environments. Each approach underlies specific hypotheses
about the processes that drive community energy flux and,
therefore, requires different amounts of information (figure 1).
The approaches and their assumptions are formalized and
described in detail in the Methods section. Since energy
intake and expenditure can scale differently with size or
have different density dependence [27,29,32], we extend our
analysis to quantifying metabolism, photosynthesis, and
net energy production (their difference). The model underly-
ing each approach was parametrized from an independent
dataset where rates of energy use were measured for the
phytoplankton species individually as a function of cell
biovolume (um?, a proxy for biomass) and population density
[29]. We then used information on size structure, biovolume,
or abundance to estimate community energy flux and
compare the relative bias, precision, and accuracy of these
approaches in predicting empirical measurements of
metabolism and net production.

Community energy flux was measured empirically on two sets
(runs) of marine phytoplankton communities with 10 replicate
communities each. The two runs were set-up four weeks apart
and exposed to a light intensity of 75.4 + 3.9 pm quanta m™>s™"'
and 111.2 + 5.4, respectively. The details of this experiment are
described in [35]. Briefly, communities were established by
mixing equal biovolumes of six species (4 to 500 pm> in size) in
clear glass funnels (500 ml) kept at 22 +1°C. Each week for 10
weeks, we measured photosynthesis and respiration rates under
seven light intensities (0-300 pm quanta m™s™" at increments of
50) from five subsamples (5 ml) of each community. Oxygen



rates (mol O, min~") were measured using 24-channel PreSens
sensor dish readers (AS-1 Scientific Wellington, New Zealand)
and calculated for each subsample as VO, =-1 x ((m, —my)/
100) x VBO,, where m, is the rate of change of O, saturation in
each sample (min™!), mp is the mean O, saturation across all
blanks (min™?), V is the water volume (0.0051), and SO, is the
oxygen capacity of air-saturated seawater at 20°C and 35 ppt
salinity (225 pmol O,17"). The rate of oxygen production or
consumption was averaged among the five subsamples of each
community and across light intensities. Oxygen rates were con-
verted to calorific energy (J min™") using the conversion factor of
0.512 ] (umol O,)~" [36] and calculated for the whole community
(J min™" for 500 ml) assuming a 16 L:8D cycle for consistency
with [29], albeit communities were grown under a 14 L:10D
cycle. Community metabolism was calculated over 24 h as the
sum of 16 h of light metabolism and 8 h of dark metabolism. Com-
munity net production was calculated as 16 h of photosynthesis
minus 8 h of respiration (average metabolism per hour x 8 h). For
each community, we used light microscopy to determine the
density (cells pI™") and biovolume (um?) of each species, and
from these calculated species biovolumes and total community
biovolume (um? in 500 ml).

(b) Estimates of community energy flux

We used six approaches to estimate community metabolism and
net production across succession (figure 1). The parameters used
in each approach are derived from an independent dataset pre-
sented in Malerba et al. [29] where the authors quantified the
scaling of cell metabolism and net production as a function of
cell size (biovolume, um®) and population density across 21 phy-
toplankton species, including the same species included in the
communities. Measurements were performed across six light
intensities (0-250 pm quanta m 2 s™') and four population den-
sities standardized by biomass density at 21+2°C. Daily cell
metabolism (Joules day ™' cell™) was calculated for 24 h of dark-
ness and net production as the difference between 16h of
photosynthesis and 8 h of respiration. For consistency, all esti-
mates of community energy flux were calculated over the same
light cycle (Joules day™' for a community of 500 ml). The
approaches, their assumptions, and the steps taken to estimate
community energy flux are described below and presented in
detail in electronic supplementary material, table S1.

(i) Mean rates per cell among species

Ecom = Ecell (Erell spls Ecell Sp2s ey Erell spn)7)< N. This aPProaCh
assumes that community energy flux (Ecom) is the product of
the mean individual (per cell) energy use among all species
(E e, given Ecen spn the individual energy use of each species)
and the total abundance of organisms (N), regardless of identity
or size. We calculated the per cell energy use of each species from
their population rates [29] and then multiplied the grand mean
among species by the total abundance of cells in communities.
This approach does not consider changes in size distributions
but might work if species have similar rates of energy use and
if changes in the abundance of organisms are stronger drivers
of energy flux than changes in size.

(i) Mean biomass-specific cell rates among species

Ecom = Ebio (Ebio spls Ebio Sp2s v e+s Ebio spn) xB.  This approaCh
requires a similar amount of information as the approach
above, but focuses on biomass (or biovolume)-specific rates
rather than rates per cell. It assumes that community energy
flux changes proportionally (isometrically) to community mass.
Community energy flux can thus be predicted from the mean
biomass-specific energy flux among species (Epio, With Epiospn
the biomass-specific cell energy use of each species) and total
mass (B). In our phytoplankton species, cell energy use scales

hypoallometrically with cell biovolume (um® used as a proxy n

for mass) at constant density [29]. However, isometry between
community energy flux and mass can emerge even when metab-
olism scales allometrically for individual species [26]. Therefore,
this approach could work even for communities of species
for which metabolism scales allometrically when measured in
isolation. We used the independent dataset to calculate the bio-
volume-specific energy use for each species by dividing their
cell rate (calculated above) by their average cell biovolume; we
then multiplied the overall mean biovolume-specific rate by
total community biovolume.

(iii) Size-dependent cell rates across species

Ecom = >_iq (Eceni X N;), where logo(Ecens) = @ + B x 10g10(S;). This
approach assumes that community energy flux can be predicted
from size distributions because energy use is highly correlated
with size. On a log-scale, these scaling relationships quantify the
common size dependence (B) of cell energy use and its intercept
(@) across species within a taxon. Hence, the average cell energy
use (Ecn;) of any species within that taxon can be predicted from
these common parameters based on the species’ average size
(5)). Total community energy flux is the sum across species of
cell rates, converted to arithmetic scale, multiplied by the abun-
dance of each species within the community (N;). We used the
interspecific scaling functions (2.1) and (2.2) below [29] to estimate
cell metabolism and net production for each species as a function
of their average biovolume (um®) in the community and then calcu-
lated total community energy flux by adding the contribution of
each species based on their abundance.

Log,,(cell metabolism J d ™" cell ™)

= 0.71 x log,,(mean cell volume) — 7.32 (2.1)
Log;,,(cell net production ] d'cell™)

= 0.63 x log,,(mean cell volume) — 6.89 (2.2)

(iv) Size- and density-dependent cell rates across species

Ecom =371 (Eceni X Ni), where logio(Ecens) = o+ B x logi0(Si) +
6 x D;. This approach is similar to the above with the difference
that it also estimates the common density dependence of cell
energy use across species (6) as a function of their population
biomass density (D;) [29]. We used the full interspecific scaling
functions from [29] to estimate cell metabolism (2.3) and net

production (2.4) based on size and density:

Log;,,(cell metabolism J d'cell™)
= 0.71 x log,,(mean cell volume) — 0.004

X concentration — 7.32 (2.3)

Log;(cell net production J d! cell™)
= 0.63 x log,,(mean cell volume) — 0.004

x concentration — 6.89, (2.4)

where concentration is the population density expressed as bio-
mass concentration (equivalent to optical density, reported in
%), which allows better comparison than cell number given
differences in size among species. We calculated cell rates in
two ways: (i) from the species population density which assumes
that cell energy use is density dependent only in response to con-
specifics and (ii) from total community density, thus assuming
that each cell is affected equally by all other cells independently
of species.

(v) Average individual species cell rates
Ecom = Zi:] ((Ecell spl X Nspl) + (Ecell sp2 X Nspz) +...t (Ecell sp1 X
Ngps)). This approach assumes that differences in energy use
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among species are important and therefore energy use needs to
be measured for individual species [19,21,26], but it also assumes
that the effect of density can be ignored. Community energy flux
is the sum across species of the average cell energy use of each
species (Ecen sps; Calculated for the first approach without
averaging across all species) multiplied by its abundance (Ngps)-

(vi) Density-dependent individual species cell rates

Ecom = Zi:] (Ecell spk X Nspk)/ where 10810(Ece11 spk) =0 + O %
log10(Dy). This last approach accounts for species-specific differ-
ences in metabolic density dependence, so that the cell energy
use of each species (Eca spk) is calculated as a function of its
population biomass density (Dy) using species-specific par-
ameters (&, ay). This approach should perform better than all
others given that it includes the most information; the obvious
drawback is that it requires much more data. From the indepen-
dent dataset [29], we estimated the decline in cell metabolism
and photosynthesis with increasing biomass density for each
species using linear models on logyo-transformed data (electronic
supplementary material, table S1, figure S1). We used these
species-specific parameters to calculate the cell rates of each
species from (i) its population density (i.e. only intraspecific com-
petition) or (ii) the community biomass density (i.e. interspecific
effects equal to intraspecific effects). In both cases, community
rates are the sum of population rates (cell rates x abundance of
each species).

(c) Statistical analyses
We tested the ability of each approach to predict changes in
community energy flux using linear mixed models on untrans-
formed data, including the community as a random effect and
using Wald tests to calculate 95% confidence intervals. The rela-
tive performance of the approaches was evaluated based on
precision, bias, and accuracy. Precision was measured by the
R® of the regressions—a low precision (low R®) indicates that
the estimates are spread out relative to each other (high var-
iance). Bias was calculated as the difference between 1 (all data
points fall on a straight line) and the observed slope [37]. Positive
bias indicates that the estimator overestimates the true value of
community energy flux (regression slope less than 1), while
negative bias that it underestimates it (regression slope greater
than 1) [38]. We calculated the mean square error (MSE) as a
measure of accuracy, which is defined by the combination of
both bias and precision and indicates how close the estimator
is to the true value [39]. The MSE was calculated across all 100
values of community energy flux within each run (n) as
MSE =1/nx >, (Yi — Yi)” where Y; is each estimate of com-
munity metabolism (or net production) and Yi is the actual
(observed) value. For each approach, we report the squared
root of the MSE (RMSE), which has the same unit as community
energy flux (J d7"), standardized by the approach with lowest
RMSE within that run for easier comparison. Therefore, an
RMSE of 1 identifies the best approach and values greater than
1 progressively worse approaches.

We used linear models to estimate the relationship between
(i) cell density and population biomass concentration and
(ii) the density dependence of cell energy use for each species
(electronic supplementary material, table S1, figure S1). Data
of cell density, metabolism, and photosynthesis were loge-
transformed prior to analyses to meet assumptions of normality
and homogeneity of variance. For all analyses, these assumptions
were assessed visually by plotting residuals versus fitted values
and Q-Q plot, respectively. To test for energy equivalence, we
used linear mixed models between (i) total cell abundance
and average cell size among all species, (ii) average cell metab-
olism (net production) and average cell size, (iii) community
metabolism (net production) and average cell size, and

(iv) community metabolism (net production) and total biovo-
lume. The community was included as a random effect and
data were log;o-transformed prior to analyses. Data collected
on the first sampling time (week 0) were removed because abun-
dance and size were experimentally manipulated (to achieve
equal biovolumes among species) and therefore could not be
used to assess size-abundance trade-offs. Statistics and plots
were performed in RStudio Team (2015) using packages Ime4
[39], ImerTest [40], car [41].

3. Results

Overall, each approach performed quite consistently in its
ability to predict community metabolism and net production
(figure 2), so that we were able to rank them based on their
average accuracy (electronic supplementary material, table
S2). Rates reconstructed from the mean energy use per cell
(first approach), performed substantially worse than all
others (average RMSE = 34.8 + 4.13). Conversely, the similarly
simplistic approach based on mean biomass-specific rates
was the most accurate overall and the most consistent
(RMSE =1.03 + 0.02). It was the approach that best-predicted
community metabolism (figure 2, see electronic supplemen-
tary material, figure S2 for separate runs), while net
production was best predicted by individual species rates
with density effects (figure 2, electronic supplementary
material, figure S3).

Most approaches had positive bias with high intercepts
(electronic supplementary material, table S3), therefore they
underestimated community energy flux at low values and
overestimated them at larger values (figure 2 except k). The
most complex approach (density-dependent individual
species rates) had generally lower bias and intercepts. This
approach ranked second for overall accuracy when cell rates
were calculated from species densities (RMSE =1.12 = 0.11),
and third when calculated from community density (1.26 +
0.04). Estimates based on interspecific scaling relationship
with density dependence ranked fourth when calculated
from species densities (1.34 +0.15). Accounting for density-
dependent energy use, either across or within species,
typically lowered intercepts and increased accuracy (figure 2;
electronic supplementary material, table S3). Model
predictions overestimated community energy flux when cal-
culated assuming only intraspecific competition, while they
underestimated it when based on total community density
(electronic supplementary material, figures S4 and S5).

Precision was variable and always below 0.7 indicating
that at least 30% of community energy flux was influenced
by factors that we have not accounted for. All approaches
had larger errors (lower accuracy) for larger values of commu-
nity energy flux (electronic supplementary material, figure S6),
with the exception of the worst approach (mean rates per cell)
for which accuracy improved for larger values of energy
flux. The most complex approach (density-dependent individ-
ual species rates) also showed this pattern for metabolism
(electronic supplementary material, figure S6).

(a) Community metabolism

(i) Mean rates per cell

Assuming a constant energy use per cell among all species
grossly overestimated community metabolism (figure 2a).
This approach suffered from the lowest precision (R* = 0.004

$6600707 :L8T § 0§ 'Y 20id  qdsi/jeuinol/biobuiysijgndAiaposiefos



—~

Q

a2
[ [o%)
=3 =3
=3 =)
S S

S
S
3

observed (J d1)

(c) 3000

[55]
(=3
(=3
(=}

—_
(=3
(=3
(=)

observed (J d1)

(e) 3000

2000

—_
(=3
(=3
(=)

observed (J d1)

(g) 3000

2000

1000

observed (J d!)

~
~.
~

3000

53
[=3
(=3
(=)

S
S
3

observed (J d™1)

(k) 3000

2000

IS
S
3

observed (J d1)

metabolism

(RMSE = 44.5/26.7)
1
¥
1
I
'
'
1
1
I
T
h
20000 40000 60000 80000
estimated from mean rates per cell (J d™!)
(1/1) e
- % <
0 1000 2000 3000
mean mass-specific rates per cell (J d~!)
(1.51/1.07) R
0 1000 2000 3000
size dependence across species (J d~1)
(1.42/1.14) -7
e z -
0 1000 2000 3000
size and density dependence across sp (J d~!)
’
(1.96/2) it
,/
’
%
12
e
/
’
’
s
’,
7’
7’
’

0 2000 4000 6000 8000
mean individual species rates (J d—1)
(1.45/1.03) q.-"
0 1000 2000 3000

density-dependent individual sp. rates (J d~")

(b)

()

o))

(W)

)

O]

5000 1

30004

10004

5000 A

30004

10004

50004

30004

10004

50004

30004

10004

50004

30004

10004

50004

30004

10004

net production

(R:MSE =38.6/29.33)

1
[}
.
1
1
1
1
1
k
:
20000 40000 60000 80000
estimated from mean rates per cell (J d™!)
(1.1/1.03) L7
™ J
0 1000 2000 3000 4000 5000
mean mass-specific rates per cell (J d~!)
(2.27/1.58) Il
e
s
52
’
’
e
4 d
0 2000 4000 6000 8000
size dependence across species (J d7!)
(1.72/1.06) el
0 1000 2000 3000 4000 5000
size and density dependence across sp (J d~!)
(1.3/1.59) It
7z Vs .
57
.
”
s
7 < >
0 2000 4000 6000 8000
mean individual species rates (J d—1)
(1) .
s - -
0 1000 2000 3000 4000 5000

density-dependent individual sp. rates (J d™!)

Figure 2. Relationship between observed community metabolism (left) or net production (right) and estimates of community rates from each approach: mean rates
per cell (a,b), mean cell mass-specific rates (c,d), size-dependent cell energy use across species (e,f), size- and density-dependent cell energy use across species (g,
h), mean cell rates for individual species (i), and density-dependent cell rates for individual species (k,/). Each graph reports the square root of the mean square
error (RMSE) for run 1 (left; green) and run 2 (right; orange) with 1 indicating the most accurate approach and values greater than 1 progressively lower accuracy.
Only estimates from species density are shown (electronic supplementary material, figures 54 and S5 for community density). Each point represents a community at
each sampling time. Solid lines are mean estimates from linear mixed models with 95% Wald confidence intervals. Broken lines represent the 1:1 line. (Online

version in colour.)



and 0.006), greatest bias (approx. 1), and lowest accuracy
(RMSE approx. 30 times greater than other approaches,
electronic supplementary material, table S3).

(i) Mean biomass-specific rates per cell

Despite not including more information than the approach
above, mean biomass-specific cell rates predicted community
metabolism with the greatest accuracy (RMSE = 1; electronic
supplementary material, table S1, figure 2c). This approach
ranked third for precision (R?=0.57 and 0.44, electronic sup-
plementary material, table S3) and had positive bias (0.37 and
0.44; electronic supplementary material, figure S6).

(iii) Size-dependent cell rates across species

Conversely, predictions from the interspecific scaling of cell
metabolism with cell size had lower precision (R>=0.22 and
0.37) and higher positive bias (0.66 and 0.46, electronic sup-
plementary material, table S3). It also had lower accuracy but
this was more run-dependent as it performed substantially
better in run 2 (RMSE = 1.51 and 1.07, figure 2e¢).

(iv) Size- and density-dependent cell rates across species
Accounting for the effects of both size and density on cell
metabolism across species improved accuracy for run 1 but
decreased it for run 2 (RMSE = 1.42 and 1.14; figure 2g). Pre-
cision (R*=0.15 and 0.36) and bias (0.52 and 0.15) were also
worse in run 1 compared to run 2 (electronic supplementary
material, table S3). Estimates were more accurate when built
on species densities than community density (electronic
supplementary material, figure S4).

(v) Average individual species cell rates

The average energy use of individual species was a poor pre-
dictor of community metabolism: accuracy was low (RMSE =
1.92 and 2) largely overestimating community metabolism for
some communities (figure 2i). This approach had good pre-
cision (R*=0.61) but high bias (0.64) in run 1 and low
precision (R?=0.31) and high bias in run 2 (0.76, electronic
supplementary material, table S3).

(vi) Density-dependent individual species cell rates

When accounting for density dependence, the metabolic rates
of individual species led to much better estimates of commu-
nity metabolism (figure 2k). In run 1, predictions were more
accurate when based on community density (RMSE =1.26)
than species density (RMSE =1.45), but in run 2, we found
the opposite pattern (electronic supplementary material,
table S2). Overall, bias was lowest when estimates were
based on species densities (0.27 and 0.04), while precision
was highest when based on community density (R*=0.69
and 0.52) but with negative bias (-0.63 and -0.28, electronic
supplementary material, figure S4).

(b) Community net production

(i) Mean rates per cell

Assuming a constant energy use per cell grossly overesti-
mated community net production (figure 2b). This
approach had the lowest precision (R*=0.01 and 0.005),
greatest bias (approx. 1), and lowest accuracy (RMSE
approx. 30, electronic supplementary material, table S3).

(i) Mean biomass-specific cell rates

The mean biomass-specific net production among species
predicted changes in community production remarkalbly
accurately, ranking second in both runs (RMSE=1.10 and
1.03, figure 2d). This approach had good precision (R%=
0.52 and 0.55, electronic supplementary material, table S3)
but positive bias especially for larger values (0.29 and 0.47;
electronic supplementary material, figure S6).

(iii) Size-dependent cell rates across species

This approach was a poor predictor of the communtiy net
production having low precision (0.08 and 0.37), high bias
(0.82 and 0.61), and low accuracy (RMSE=2.27 and 1.58,
electronic supplementary material, table S3, figure 2f).

(iv) Size- and density-dependent cell rates across species

Accounting for the effects of both size and density across
species improved predictions, to a greater extent when
based on species densities (RMSE =1.72 and 1.06, figure 2k)
than on community density (electronic supplementary
material, table S2, figure S5). However, this approach still
had low precision (R*=0.03 and 0.33) and positive bias
(0.79 and 0.44, electronic supplementary material, table S3).

(v) Average individual species cell rates

Accounting for differences in energy use among species
improved precision (R*=0.55 and 0.45) but not bias (0.47
and 0.65, electronic supplementary material, table S3). This
approach increased accuracy for run 1 (RMSE=1.30), but
decreased it for run 2 (RMSE = 1.59; figure 2j).

(vi) Density-dependent individual species cell rates

When accounting for density dependence, species rates were
the best predictor of community net production when based
on species densities (RMSE =1, figure 2I). This approach had
good precision (R*=0.52 and 0.48), but positive bias (0.18
and 0.43) especially for larger values (electronic supplemen-
tary material, figure S6). Estimates based on community
supplementary
material, table S2, table S3) and underestimated community
production (electronic supplementary material, figure S5).

density were less accurate (electronic

() Why is biomass-specific energy flux not affected by
changes in cell size?

Below, we report the results for run 1 but the same findings
apply to run 2 (electronic supplementary material, table S4,
figure S8). During succession, the average cell energy use
among species in communities increased nearly isometrically
with average cell size (slope=1.1, 95% CI=1.04, 1.16 for
metabolism, figure 34; 1.12, CI=1.07, 1.18 for net production,
electronic supplementary material, figure S7, table S4). Simul-
taneously, total cell abundance decreased with cell size with a
negative isometric slope (-1.02, CI=-1.1, —0.94, figure 3b).
The negative covariance between size and abundance was
only visible at the level of the whole community, while
there was no clear relationship within most species (electronic
supplementary material, figure S9). The almost reciprocal size
scaling of cell energy flux and abundance within commu-
nities meant that community energy flux was, at any point
in time, nearly independent of average cell size (i.e. energy
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equivalence)—nearly because community energy flux
slightly increased with cell size but this relationship was
weak (slope =0.08, CI=0.02, 0.15 for metabolism, figure 3c;
0.1, CI=0.04, 0.18 for net production, electronic supplemen-
tary material, figure S7). While communities might have
approached carrying capacity towards the end of the exper-
iment, energy equivalence occurred throughout succession
even when total community biovolume was distant from
equilibrium (electronic supplementary material, figure S10).
Finally, because average cell energy use scaled nearly isome-
trically with average cell size, community energy flux was
predominantly driven by total biovolume with no clear influ-
ence of size structure (slope=0.56, CI=0.44, 0.69 for
metabolism, figure 3d; 0.61, CI =0.48, 0.75 for net production,
electronic supplementary material, figure S7).

4. Discussion

By comparing different approaches, we find that energy-size
relationships among species are not the most accurate nor
consistent predictor of community energy flux, at least at
small scales. Phytoplankton communities underwent sub-
stantial changes in size structure over time, with average
cell size increasing by an order of magnitude over 10 weeks
[35]. Based on the allometric scaling of metabolism with
size for these species [29], a community of larger cells
should have a lower biomass-specific energy flux than a
community of smaller cells (figure 4) [2,3]. Hence, we
would have expected interspecific scaling relationships to
explain a larger proportion of total energy flux and
approaches not accounting for size structure to perform
poorly (e.g. mean rates per cell or mean biomass-specific
rates). Whereas interspecific scaling relationships explained
a maximum of approximately 40% in variance in community
energy flux, similarly to previous findings [2], and their per-
formance varied markedly across tests. Accounting for
density-dependent energy use only slightly improved the
accuracy of interspecific relationships. Conversely, the sim-
plistic approach based on biomass-specific rates was the
most consistent and accurate overall. Hence, while body
size is a strong predictor of individual energy use,

interspecific scaling relationships based on size can be poor
predictors of community functioning [8,22].

The relatively poor performance of interspecific scaling
relationships could be partly attributed to differences in
density dependence among species. Community rates were
predicted very accurately and with little bias when cell
energy use and its density dependence were parametrized
for individual species, but poorly without density information.
The importance of density effects on energy use might differ
among systems or habitats because species-specific rates
(without density) can sometimes be sufficient to estimate
community energy flux [19,21,26]. Regardless, the potential
application of approaches based on species-specific rates is
limited because they require a lot of data. Estimates from bio-
mass-specific rates were at least as good, providing a much
simpler way to estimate community function and indicating
no influence of size structure on total energy flux.

Surprisingly, we found energy equivalence at any point in
time during succession. Energy equivalence predicts that the
maximum number of organisms per unit area depends on
their metabolic rate (hence size), therefore total energy flux
should be independent of size [34]. While this prediction
should apply at carrying capacity [2,21,31], which might be
approached by some communities towards the end of the
experiment, we find that it occurs throughout succession
even when communities are not yet at steady state. The
higher metabolism of larger cells that dominated over time
was almost perfectly compensated for by their lower abun-
dance. A similar metabolic compensation was observed in
phytoplankton communities under warming [21]. In both
cases, size-abundance trade-offs meant that community
energy flux was not influenced by size structure.

Energy equivalence does not necessarily explain why
community energy flux can be predicted from biomass
alone. Energy equivalence occurs with any value of scaling
exponents as long as they are reciprocal (e.g. % and —%).
Whereas biomass-specific energy use is constant only under
isometry (scaling of 1, figure 4) [26,31]. The isometry of
energy flux in these communities may seem paradoxical
given that energy use scales allometrically with size for
these species when measured in isolation at constant density
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[29]. But we show that size-abundance trade-offs among
these species (of different size and energy use) cause the aver-
age energy use of cells in communities to scale isometrically
with their average size. Species assembly can thus drive iso-
metry of community energy flux, even if scaling is allometric
for individual species [26].

The correlation between community energy flux and bio-
volume, however, broke down at high biovolumes dominated
by large cells. Here, energy flux was consistently overesti-
mated (electronic supplementary material, figure S11).
While we can only speculate on this result, larger cells
might be under stronger metabolic suppression where they
dominate biomass [42]. A greater reduction in metabolic
costs might allow larger species to sustain higher abundances
and biovolumes than predicted from their size [8,32,43,44].
However, as biomass accumulates, community energy flux
is overestimated if metabolic suppression is ignored.
Indeed, while most approaches overestimated energy flux,
this bias was lowest when we accounted for differences in
density-dependent energy use among species. Metabolic
reductions in response to competitors could thus explain
the allometry of community production [26,45] and might
become increasingly important as biomass accumulates.

While there is good evidence of metabolic suppression in
response to conspecifics [27-29], the effects of heterospecifics
remain largely unexplored [46]. By predicting cell energy use
either as a function of species density (assuming only intras-
pecific competition) or community density (equal conspecific
and heterospecific effects), we show that conspecifics are the
main driver of metabolic suppression. However, metabolic
suppression also occurs in response to heterospecifics but
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